Copied to
clipboard

G = C5xC23:2D4order 320 = 26·5

Direct product of C5 and C23:2D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5xC23:2D4, (C2xC20):24D4, C23:2(C5xD4), (C22xC10):5D4, (C22xD4):1C10, C24.4(C2xC10), C10.90C22wrC2, C22.68(D4xC10), C10.40(C4:1D4), C2.C42:9C10, (C23xC10).4C22, C10.137(C4:D4), C23.75(C22xC10), (C22xC10).456C23, (C22xC20).400C22, (C2xC4):2(C5xD4), (D4xC2xC10):13C2, C2.6(C5xC4:D4), C2.3(C5xC4:1D4), (C2xC22:C4):6C10, C2.4(C5xC22wrC2), (C10xC22:C4):27C2, (C2xC10).608(C2xD4), (C22xC4).4(C2xC10), C22.35(C5xC4oD4), (C2xC10).216(C4oD4), (C5xC2.C42):25C2, SmallGroup(320,893)

Series: Derived Chief Lower central Upper central

C1C23 — C5xC23:2D4
C1C2C22C23C22xC10C23xC10D4xC2xC10 — C5xC23:2D4
C1C23 — C5xC23:2D4
C1C22xC10 — C5xC23:2D4

Generators and relations for C5xC23:2D4
 G = < a,b,c,d,e,f | a5=b2=c2=d2=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf=bc=cb, bd=db, ebe-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 634 in 322 conjugacy classes, 86 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2xC4, C2xC4, D4, C23, C23, C23, C10, C10, C10, C22:C4, C22xC4, C22xC4, C2xD4, C24, C20, C2xC10, C2xC10, C2xC10, C2.C42, C2xC22:C4, C22xD4, C2xC20, C2xC20, C5xD4, C22xC10, C22xC10, C22xC10, C23:2D4, C5xC22:C4, C22xC20, C22xC20, D4xC10, C23xC10, C5xC2.C42, C10xC22:C4, D4xC2xC10, C5xC23:2D4
Quotients: C1, C2, C22, C5, D4, C23, C10, C2xD4, C4oD4, C2xC10, C22wrC2, C4:D4, C4:1D4, C5xD4, C22xC10, C23:2D4, D4xC10, C5xC4oD4, C5xC22wrC2, C5xC4:D4, C5xC4:1D4, C5xC23:2D4

Smallest permutation representation of C5xC23:2D4
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 146)(2 147)(3 148)(4 149)(5 150)(6 110)(7 106)(8 107)(9 108)(10 109)(11 112)(12 113)(13 114)(14 115)(15 111)(16 81)(17 82)(18 83)(19 84)(20 85)(21 90)(22 86)(23 87)(24 88)(25 89)(26 119)(27 120)(28 116)(29 117)(30 118)(31 93)(32 94)(33 95)(34 91)(35 92)(36 96)(37 97)(38 98)(39 99)(40 100)(41 103)(42 104)(43 105)(44 101)(45 102)(46 133)(47 134)(48 135)(49 131)(50 132)(51 129)(52 130)(53 126)(54 127)(55 128)(56 156)(57 157)(58 158)(59 159)(60 160)(61 155)(62 151)(63 152)(64 153)(65 154)(66 121)(67 122)(68 123)(69 124)(70 125)(71 142)(72 143)(73 144)(74 145)(75 141)(76 136)(77 137)(78 138)(79 139)(80 140)
(1 12)(2 13)(3 14)(4 15)(5 11)(6 143)(7 144)(8 145)(9 141)(10 142)(16 153)(17 154)(18 155)(19 151)(20 152)(21 140)(22 136)(23 137)(24 138)(25 139)(26 51)(27 52)(28 53)(29 54)(30 55)(31 156)(32 157)(33 158)(34 159)(35 160)(36 46)(37 47)(38 48)(39 49)(40 50)(41 70)(42 66)(43 67)(44 68)(45 69)(56 93)(57 94)(58 95)(59 91)(60 92)(61 83)(62 84)(63 85)(64 81)(65 82)(71 109)(72 110)(73 106)(74 107)(75 108)(76 86)(77 87)(78 88)(79 89)(80 90)(96 133)(97 134)(98 135)(99 131)(100 132)(101 123)(102 124)(103 125)(104 121)(105 122)(111 149)(112 150)(113 146)(114 147)(115 148)(116 126)(117 127)(118 128)(119 129)(120 130)
(1 29)(2 30)(3 26)(4 27)(5 28)(6 136)(7 137)(8 138)(9 139)(10 140)(11 53)(12 54)(13 55)(14 51)(15 52)(16 157)(17 158)(18 159)(19 160)(20 156)(21 142)(22 143)(23 144)(24 145)(25 141)(31 152)(32 153)(33 154)(34 155)(35 151)(36 70)(37 66)(38 67)(39 68)(40 69)(41 46)(42 47)(43 48)(44 49)(45 50)(56 85)(57 81)(58 82)(59 83)(60 84)(61 91)(62 92)(63 93)(64 94)(65 95)(71 90)(72 86)(73 87)(74 88)(75 89)(76 110)(77 106)(78 107)(79 108)(80 109)(96 125)(97 121)(98 122)(99 123)(100 124)(101 131)(102 132)(103 133)(104 134)(105 135)(111 130)(112 126)(113 127)(114 128)(115 129)(116 150)(117 146)(118 147)(119 148)(120 149)
(1 81 66 106)(2 82 67 107)(3 83 68 108)(4 84 69 109)(5 85 70 110)(6 126 20 133)(7 127 16 134)(8 128 17 135)(9 129 18 131)(10 130 19 132)(11 63 41 72)(12 64 42 73)(13 65 43 74)(14 61 44 75)(15 62 45 71)(21 149 35 124)(22 150 31 125)(23 146 32 121)(24 147 33 122)(25 148 34 123)(26 59 39 79)(27 60 40 80)(28 56 36 76)(29 57 37 77)(30 58 38 78)(46 86 53 93)(47 87 54 94)(48 88 55 95)(49 89 51 91)(50 90 52 92)(96 143 116 152)(97 144 117 153)(98 145 118 154)(99 141 119 155)(100 142 120 151)(101 139 115 159)(102 140 111 160)(103 136 112 156)(104 137 113 157)(105 138 114 158)
(6 152)(7 153)(8 154)(9 155)(10 151)(16 144)(17 145)(18 141)(19 142)(20 143)(21 160)(22 156)(23 157)(24 158)(25 159)(31 136)(32 137)(33 138)(34 139)(35 140)(56 76)(57 77)(58 78)(59 79)(60 80)(61 75)(62 71)(63 72)(64 73)(65 74)(81 106)(82 107)(83 108)(84 109)(85 110)(86 93)(87 94)(88 95)(89 91)(90 92)(96 133)(97 134)(98 135)(99 131)(100 132)(101 123)(102 124)(103 125)(104 121)(105 122)(111 149)(112 150)(113 146)(114 147)(115 148)(116 126)(117 127)(118 128)(119 129)(120 130)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,146)(2,147)(3,148)(4,149)(5,150)(6,110)(7,106)(8,107)(9,108)(10,109)(11,112)(12,113)(13,114)(14,115)(15,111)(16,81)(17,82)(18,83)(19,84)(20,85)(21,90)(22,86)(23,87)(24,88)(25,89)(26,119)(27,120)(28,116)(29,117)(30,118)(31,93)(32,94)(33,95)(34,91)(35,92)(36,96)(37,97)(38,98)(39,99)(40,100)(41,103)(42,104)(43,105)(44,101)(45,102)(46,133)(47,134)(48,135)(49,131)(50,132)(51,129)(52,130)(53,126)(54,127)(55,128)(56,156)(57,157)(58,158)(59,159)(60,160)(61,155)(62,151)(63,152)(64,153)(65,154)(66,121)(67,122)(68,123)(69,124)(70,125)(71,142)(72,143)(73,144)(74,145)(75,141)(76,136)(77,137)(78,138)(79,139)(80,140), (1,12)(2,13)(3,14)(4,15)(5,11)(6,143)(7,144)(8,145)(9,141)(10,142)(16,153)(17,154)(18,155)(19,151)(20,152)(21,140)(22,136)(23,137)(24,138)(25,139)(26,51)(27,52)(28,53)(29,54)(30,55)(31,156)(32,157)(33,158)(34,159)(35,160)(36,46)(37,47)(38,48)(39,49)(40,50)(41,70)(42,66)(43,67)(44,68)(45,69)(56,93)(57,94)(58,95)(59,91)(60,92)(61,83)(62,84)(63,85)(64,81)(65,82)(71,109)(72,110)(73,106)(74,107)(75,108)(76,86)(77,87)(78,88)(79,89)(80,90)(96,133)(97,134)(98,135)(99,131)(100,132)(101,123)(102,124)(103,125)(104,121)(105,122)(111,149)(112,150)(113,146)(114,147)(115,148)(116,126)(117,127)(118,128)(119,129)(120,130), (1,29)(2,30)(3,26)(4,27)(5,28)(6,136)(7,137)(8,138)(9,139)(10,140)(11,53)(12,54)(13,55)(14,51)(15,52)(16,157)(17,158)(18,159)(19,160)(20,156)(21,142)(22,143)(23,144)(24,145)(25,141)(31,152)(32,153)(33,154)(34,155)(35,151)(36,70)(37,66)(38,67)(39,68)(40,69)(41,46)(42,47)(43,48)(44,49)(45,50)(56,85)(57,81)(58,82)(59,83)(60,84)(61,91)(62,92)(63,93)(64,94)(65,95)(71,90)(72,86)(73,87)(74,88)(75,89)(76,110)(77,106)(78,107)(79,108)(80,109)(96,125)(97,121)(98,122)(99,123)(100,124)(101,131)(102,132)(103,133)(104,134)(105,135)(111,130)(112,126)(113,127)(114,128)(115,129)(116,150)(117,146)(118,147)(119,148)(120,149), (1,81,66,106)(2,82,67,107)(3,83,68,108)(4,84,69,109)(5,85,70,110)(6,126,20,133)(7,127,16,134)(8,128,17,135)(9,129,18,131)(10,130,19,132)(11,63,41,72)(12,64,42,73)(13,65,43,74)(14,61,44,75)(15,62,45,71)(21,149,35,124)(22,150,31,125)(23,146,32,121)(24,147,33,122)(25,148,34,123)(26,59,39,79)(27,60,40,80)(28,56,36,76)(29,57,37,77)(30,58,38,78)(46,86,53,93)(47,87,54,94)(48,88,55,95)(49,89,51,91)(50,90,52,92)(96,143,116,152)(97,144,117,153)(98,145,118,154)(99,141,119,155)(100,142,120,151)(101,139,115,159)(102,140,111,160)(103,136,112,156)(104,137,113,157)(105,138,114,158), (6,152)(7,153)(8,154)(9,155)(10,151)(16,144)(17,145)(18,141)(19,142)(20,143)(21,160)(22,156)(23,157)(24,158)(25,159)(31,136)(32,137)(33,138)(34,139)(35,140)(56,76)(57,77)(58,78)(59,79)(60,80)(61,75)(62,71)(63,72)(64,73)(65,74)(81,106)(82,107)(83,108)(84,109)(85,110)(86,93)(87,94)(88,95)(89,91)(90,92)(96,133)(97,134)(98,135)(99,131)(100,132)(101,123)(102,124)(103,125)(104,121)(105,122)(111,149)(112,150)(113,146)(114,147)(115,148)(116,126)(117,127)(118,128)(119,129)(120,130)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,146)(2,147)(3,148)(4,149)(5,150)(6,110)(7,106)(8,107)(9,108)(10,109)(11,112)(12,113)(13,114)(14,115)(15,111)(16,81)(17,82)(18,83)(19,84)(20,85)(21,90)(22,86)(23,87)(24,88)(25,89)(26,119)(27,120)(28,116)(29,117)(30,118)(31,93)(32,94)(33,95)(34,91)(35,92)(36,96)(37,97)(38,98)(39,99)(40,100)(41,103)(42,104)(43,105)(44,101)(45,102)(46,133)(47,134)(48,135)(49,131)(50,132)(51,129)(52,130)(53,126)(54,127)(55,128)(56,156)(57,157)(58,158)(59,159)(60,160)(61,155)(62,151)(63,152)(64,153)(65,154)(66,121)(67,122)(68,123)(69,124)(70,125)(71,142)(72,143)(73,144)(74,145)(75,141)(76,136)(77,137)(78,138)(79,139)(80,140), (1,12)(2,13)(3,14)(4,15)(5,11)(6,143)(7,144)(8,145)(9,141)(10,142)(16,153)(17,154)(18,155)(19,151)(20,152)(21,140)(22,136)(23,137)(24,138)(25,139)(26,51)(27,52)(28,53)(29,54)(30,55)(31,156)(32,157)(33,158)(34,159)(35,160)(36,46)(37,47)(38,48)(39,49)(40,50)(41,70)(42,66)(43,67)(44,68)(45,69)(56,93)(57,94)(58,95)(59,91)(60,92)(61,83)(62,84)(63,85)(64,81)(65,82)(71,109)(72,110)(73,106)(74,107)(75,108)(76,86)(77,87)(78,88)(79,89)(80,90)(96,133)(97,134)(98,135)(99,131)(100,132)(101,123)(102,124)(103,125)(104,121)(105,122)(111,149)(112,150)(113,146)(114,147)(115,148)(116,126)(117,127)(118,128)(119,129)(120,130), (1,29)(2,30)(3,26)(4,27)(5,28)(6,136)(7,137)(8,138)(9,139)(10,140)(11,53)(12,54)(13,55)(14,51)(15,52)(16,157)(17,158)(18,159)(19,160)(20,156)(21,142)(22,143)(23,144)(24,145)(25,141)(31,152)(32,153)(33,154)(34,155)(35,151)(36,70)(37,66)(38,67)(39,68)(40,69)(41,46)(42,47)(43,48)(44,49)(45,50)(56,85)(57,81)(58,82)(59,83)(60,84)(61,91)(62,92)(63,93)(64,94)(65,95)(71,90)(72,86)(73,87)(74,88)(75,89)(76,110)(77,106)(78,107)(79,108)(80,109)(96,125)(97,121)(98,122)(99,123)(100,124)(101,131)(102,132)(103,133)(104,134)(105,135)(111,130)(112,126)(113,127)(114,128)(115,129)(116,150)(117,146)(118,147)(119,148)(120,149), (1,81,66,106)(2,82,67,107)(3,83,68,108)(4,84,69,109)(5,85,70,110)(6,126,20,133)(7,127,16,134)(8,128,17,135)(9,129,18,131)(10,130,19,132)(11,63,41,72)(12,64,42,73)(13,65,43,74)(14,61,44,75)(15,62,45,71)(21,149,35,124)(22,150,31,125)(23,146,32,121)(24,147,33,122)(25,148,34,123)(26,59,39,79)(27,60,40,80)(28,56,36,76)(29,57,37,77)(30,58,38,78)(46,86,53,93)(47,87,54,94)(48,88,55,95)(49,89,51,91)(50,90,52,92)(96,143,116,152)(97,144,117,153)(98,145,118,154)(99,141,119,155)(100,142,120,151)(101,139,115,159)(102,140,111,160)(103,136,112,156)(104,137,113,157)(105,138,114,158), (6,152)(7,153)(8,154)(9,155)(10,151)(16,144)(17,145)(18,141)(19,142)(20,143)(21,160)(22,156)(23,157)(24,158)(25,159)(31,136)(32,137)(33,138)(34,139)(35,140)(56,76)(57,77)(58,78)(59,79)(60,80)(61,75)(62,71)(63,72)(64,73)(65,74)(81,106)(82,107)(83,108)(84,109)(85,110)(86,93)(87,94)(88,95)(89,91)(90,92)(96,133)(97,134)(98,135)(99,131)(100,132)(101,123)(102,124)(103,125)(104,121)(105,122)(111,149)(112,150)(113,146)(114,147)(115,148)(116,126)(117,127)(118,128)(119,129)(120,130) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,146),(2,147),(3,148),(4,149),(5,150),(6,110),(7,106),(8,107),(9,108),(10,109),(11,112),(12,113),(13,114),(14,115),(15,111),(16,81),(17,82),(18,83),(19,84),(20,85),(21,90),(22,86),(23,87),(24,88),(25,89),(26,119),(27,120),(28,116),(29,117),(30,118),(31,93),(32,94),(33,95),(34,91),(35,92),(36,96),(37,97),(38,98),(39,99),(40,100),(41,103),(42,104),(43,105),(44,101),(45,102),(46,133),(47,134),(48,135),(49,131),(50,132),(51,129),(52,130),(53,126),(54,127),(55,128),(56,156),(57,157),(58,158),(59,159),(60,160),(61,155),(62,151),(63,152),(64,153),(65,154),(66,121),(67,122),(68,123),(69,124),(70,125),(71,142),(72,143),(73,144),(74,145),(75,141),(76,136),(77,137),(78,138),(79,139),(80,140)], [(1,12),(2,13),(3,14),(4,15),(5,11),(6,143),(7,144),(8,145),(9,141),(10,142),(16,153),(17,154),(18,155),(19,151),(20,152),(21,140),(22,136),(23,137),(24,138),(25,139),(26,51),(27,52),(28,53),(29,54),(30,55),(31,156),(32,157),(33,158),(34,159),(35,160),(36,46),(37,47),(38,48),(39,49),(40,50),(41,70),(42,66),(43,67),(44,68),(45,69),(56,93),(57,94),(58,95),(59,91),(60,92),(61,83),(62,84),(63,85),(64,81),(65,82),(71,109),(72,110),(73,106),(74,107),(75,108),(76,86),(77,87),(78,88),(79,89),(80,90),(96,133),(97,134),(98,135),(99,131),(100,132),(101,123),(102,124),(103,125),(104,121),(105,122),(111,149),(112,150),(113,146),(114,147),(115,148),(116,126),(117,127),(118,128),(119,129),(120,130)], [(1,29),(2,30),(3,26),(4,27),(5,28),(6,136),(7,137),(8,138),(9,139),(10,140),(11,53),(12,54),(13,55),(14,51),(15,52),(16,157),(17,158),(18,159),(19,160),(20,156),(21,142),(22,143),(23,144),(24,145),(25,141),(31,152),(32,153),(33,154),(34,155),(35,151),(36,70),(37,66),(38,67),(39,68),(40,69),(41,46),(42,47),(43,48),(44,49),(45,50),(56,85),(57,81),(58,82),(59,83),(60,84),(61,91),(62,92),(63,93),(64,94),(65,95),(71,90),(72,86),(73,87),(74,88),(75,89),(76,110),(77,106),(78,107),(79,108),(80,109),(96,125),(97,121),(98,122),(99,123),(100,124),(101,131),(102,132),(103,133),(104,134),(105,135),(111,130),(112,126),(113,127),(114,128),(115,129),(116,150),(117,146),(118,147),(119,148),(120,149)], [(1,81,66,106),(2,82,67,107),(3,83,68,108),(4,84,69,109),(5,85,70,110),(6,126,20,133),(7,127,16,134),(8,128,17,135),(9,129,18,131),(10,130,19,132),(11,63,41,72),(12,64,42,73),(13,65,43,74),(14,61,44,75),(15,62,45,71),(21,149,35,124),(22,150,31,125),(23,146,32,121),(24,147,33,122),(25,148,34,123),(26,59,39,79),(27,60,40,80),(28,56,36,76),(29,57,37,77),(30,58,38,78),(46,86,53,93),(47,87,54,94),(48,88,55,95),(49,89,51,91),(50,90,52,92),(96,143,116,152),(97,144,117,153),(98,145,118,154),(99,141,119,155),(100,142,120,151),(101,139,115,159),(102,140,111,160),(103,136,112,156),(104,137,113,157),(105,138,114,158)], [(6,152),(7,153),(8,154),(9,155),(10,151),(16,144),(17,145),(18,141),(19,142),(20,143),(21,160),(22,156),(23,157),(24,158),(25,159),(31,136),(32,137),(33,138),(34,139),(35,140),(56,76),(57,77),(58,78),(59,79),(60,80),(61,75),(62,71),(63,72),(64,73),(65,74),(81,106),(82,107),(83,108),(84,109),(85,110),(86,93),(87,94),(88,95),(89,91),(90,92),(96,133),(97,134),(98,135),(99,131),(100,132),(101,123),(102,124),(103,125),(104,121),(105,122),(111,149),(112,150),(113,146),(114,147),(115,148),(116,126),(117,127),(118,128),(119,129),(120,130)]])

110 conjugacy classes

class 1 2A···2G2H···2M4A···4H5A5B5C5D10A···10AB10AC···10AZ20A···20AF
order12···22···24···4555510···1010···1020···20
size11···14···44···411111···14···44···4

110 irreducible representations

dim11111111222222
type++++++
imageC1C2C2C2C5C10C10C10D4D4C4oD4C5xD4C5xD4C5xC4oD4
kernelC5xC23:2D4C5xC2.C42C10xC22:C4D4xC2xC10C23:2D4C2.C42C2xC22:C4C22xD4C2xC20C22xC10C2xC10C2xC4C23C22
# reps113344121266224248

Matrix representation of C5xC23:2D4 in GL6(F41)

1800000
0180000
0037000
0003700
0000180
0000018
,
100000
0400000
0040000
0004000
00003439
0000247
,
100000
010000
001000
000100
0000400
0000040
,
4000000
0400000
001000
000100
0000400
0000040
,
010000
4000000
0037100
0024400
0000400
0000040
,
100000
0400000
001000
0084000
000010
00003440

G:=sub<GL(6,GF(41))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,37,0,0,0,0,0,0,37,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,34,24,0,0,0,0,39,7],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,37,24,0,0,0,0,1,4,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,8,0,0,0,0,0,40,0,0,0,0,0,0,1,34,0,0,0,0,0,40] >;

C5xC23:2D4 in GAP, Magma, Sage, TeX

C_5\times C_2^3\rtimes_2D_4
% in TeX

G:=Group("C5xC2^3:2D4");
// GroupNames label

G:=SmallGroup(320,893);
// by ID

G=gap.SmallGroup(320,893);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,589,1766,1731]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^5=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f=b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<